首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9975篇
  免费   1025篇
  国内免费   736篇
化学   2029篇
晶体学   27篇
力学   784篇
综合类   225篇
数学   6161篇
物理学   2510篇
  2024年   9篇
  2023年   103篇
  2022年   110篇
  2021年   202篇
  2020年   269篇
  2019年   276篇
  2018年   251篇
  2017年   305篇
  2016年   397篇
  2015年   255篇
  2014年   481篇
  2013年   893篇
  2012年   440篇
  2011年   607篇
  2010年   548篇
  2009年   607篇
  2008年   621篇
  2007年   659篇
  2006年   572篇
  2005年   533篇
  2004年   463篇
  2003年   450篇
  2002年   410篇
  2001年   331篇
  2000年   285篇
  1999年   236篇
  1998年   226篇
  1997年   177篇
  1996年   168篇
  1995年   140篇
  1994年   99篇
  1993年   94篇
  1992年   80篇
  1991年   79篇
  1990年   40篇
  1989年   45篇
  1988年   34篇
  1987年   22篇
  1986年   30篇
  1985年   30篇
  1984年   25篇
  1983年   14篇
  1982年   17篇
  1981年   18篇
  1980年   15篇
  1979年   18篇
  1978年   12篇
  1977年   14篇
  1976年   7篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Accurate quantitative analysis of trace analytes in a complicated matrix is a challenge in modern analytical chemistry. An appropriate analytical method is considered to be one of the most common gaps during the whole process. In this study, a green and efficient strategy based on miniaturized matrix solid-phase dispersion and solid-phase extraction combined with capillary electrophoresis was first proposed for extracting, purifying and determining target analytes from complicated matrix, using Wubi Shanyao Pill as an example. In detail, 60 mg of samples were dispersed on MCM-48 to obtain high yields of analytes, then the extract was purified with a solid-phase extraction cartridge. Finally, four analytes in the purified sample solution were determined by capillary electrophoresis. The parameters affecting the extraction efficiency of matrix solid-phase dispersion, purification efficiency of solid-phase extraction and separation effect of capillary electrophoresis were investigated. Under the optimized conditions, all analytes demonstrated satisfactory linearity (R2>0.9983). What's more, the superior green potential of the developed method for the determination of complex samples was confirmed by the Analytical GREEnness Metric Approach. The established method was successfully applied in the accurate determination of target analytes in Wubi Shanyao Pill and thus provided reliable, sensitive, and efficient strategy support for its quality control.  相似文献   
42.
Polymethoxyflavones were a unique class of natural and safe flavonoids containing two or more methoxy groups, which were also the most abundant edible part in Citrus peel. The optimum condition in the process of selective extraction of polymethoxylated flavones from Citrus peel by matrix solid-phase dispersion (MSPD) was as follows: SBA-15 as adsorbent, ethyl acetate as eluent, the mass ratio of adsorbent to sample 1:1, and the mixture of sample and adsorbent was ground for 3 min. Twelve antioxidants were successfully screened by micro-fractionation bioactivity evaluation assay, in which four of them were flavonoid glycosides, seven of them were polymethoxylated flavones, and one was phenylpropanoid. 1-sinapoly-β-D-glucopyranoside (1) was reported for the first time in Citrus peel. And antioxidant capacity of 1-sinapoly-β-D-glucopyranoside, 5, 7, 8, 3′, 4′, 5′-hexamethoxyflavone (6), hexamethoxyflavone (11), and 5, 6, 7, 4′-tetramethoxyflavone (7) were reported for the first time. Nobiletin (compound 8), 3, 5, 6, 7, 8, 3′, 4′-heptamethoxyflavone (9) and tangeretin (10) were isolated and purified by countercurrent chromatography combined with preparative liquid chromatography. Antioxidant activity evaluation indicated that the three isolated polymethoxylated flavones owned similar antioxidant activity. This study indicated that MSPD combined with micro-fractionation bioactive evaluation was efficient in screening bioactive compounds for rapid extraction and effective pinpointing bioactive substances in natural products.  相似文献   
43.
A novel method is developed for the direct determination of naphazoline hydrochloride(NAP) and pyridoxine hydrochloride(VB6) in commercial eye drops. By using excitation–emission matrix(EEM)fluorescence coupled with second-order calibration method based on the alternating trilinear decomposition(ATLD) algorithm, the proposed approach can achieve quantitative analysis successfully even in the presence of unknown and uncalibrated interferences. The method shows good linearity for NAP and VB6 with correlation coefficients greater than 0.99. The results were in good agreement with the labeled contents. To further confirm the feasibility and reliability of the proposed method, the same batch samples were analyzed by multiple reaction monitoring(MRM) based on LC–MS/MS method.T-test demonstrated that there are no significant differences between the prediction results of the two methods. The satisfactory results obtained in this work indicate that the use of the second-order calibration method coupled with the EEM is a promising tool for industrial quality control and pharmaceutical analysis due to its advantages of high sensitivity, low-cost and simple implementation.  相似文献   
44.
45.
The interface between fibre and matrix of fibrous polymeric composites is most critical and decisive in maintaining sustainability, durability and also reliability of this potential material, but unfortunately a comprehensive conclusion is yet to meet the label of confidence for the engineering viability. Fiber reinforced polymer (FRP) composites are being accepted and also utilized as better and reliable alternative materials for repairing and/or replacing conventional materials, starting from tiny objects to mega structure in various engineering applications. The promise and potential of these materials are sometimes threatened in speedy replacement of conventional materials because of their inhomogeneities and inherent susceptibility to degradation due to moist and thermal environments. Environmental conditioning is traditionally believed to be a physical phenomenon but present literature has revealed that the interdiffusion between fiber and polymer matrix resin comprises of physical, chemical, mechanical, physico-chemical and mechano-chemical phenomena. The failure and fracture behavior at ambient conditions itself is a complex phenomenon till at present. The service conditions which are mostly hygrothermal in nature, along with a variation of applied loads make the mechanical behavior nearly unpredictable, far off from conclusions in evaluating the short term as well as long term durability and reliability of FRPs. It is essential to accurately simulate the initial and subsequent evolution process of this kind of damage phenomena, in order to explore the full potential of the mechanical properties of composite laminates. The present review has emphasized the need of complying scattered as well as limited literature on this front, and has focused on creating the urgency to highlight the importance of judicious uses of these materials with minimum safety factors with an aim to achieving lighter weight in enhancing specific properties.  相似文献   
46.
This is the part I of a tutorial review intending to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS) and discuss specific issues that arise with MS (and MS/MS) detection in LC (as opposed to the “conventional” detectors). The Part I briefly introduces the principles of operation of LC–MS (emphasizing the aspects important from the validation point of view, in particular the ionization process and ionization suppression/enhancement); reviews the main validation guideline documents and discusses in detail the following performance parameters: selectivity/specificity/identity, ruggedness/robustness, limit of detection, limit of quantification, decision limit and detection capability. With every method performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations are given, how to determine it, specifically in the case of LC–MS methods.  相似文献   
47.
A selective review of the question of how repulsive electron correlations might give rise to off‐diagonal long‐range order (ODLRO) in high‐temperature superconductors is presented. The article makes detailed explanations of the relevance to superconductivity of reduced electronic density matrices and how these can be used to understand whether ODLRO might arise from Coulombic repulsions in strongly correlated electronic systems. Time‐reversed electron pairs on alternant Cuprate and the iron‐based pnictide and chalcogenide lattices may have a weak long‐range attractive tail and much stronger short‐range repulsive Coulomb interaction. The long‐range attractive tail may find its origin in one of the many suggested proposals for high‐Tc superconductivity and thus has an uncertain origin. A phenomenological Hamiltonian is invoked whose model parameters are obtained by fitting to experimental data. A detailed summary is given of the arguments that such interacting electrons can cooperate to produce a superconducting state in which time‐reversed pairs of electrons effectively avoid the repulsive hard‐core of the Coulomb interaction but reside on average in the attractive well of the long‐range potential. Thus, the pairing of electrons itself provides an enhanced screening mechanism. The alternant lattice structure is the key to achieving robust high‐temperature superconductivity with dx2‐y2 or sign alternating s‐wave or s± condensate symmetries in cuprates and iron‐based compounds. Some attention is also given to the question first raised by Leggett as to where the Coulombic energy is saved in the superconducting transition in cuprates. A mean‐field‐type model in which the condensate density serves as an order parameter is discussed. Many of the observed trends in the thermal properties of cuprate superconductors are reproduced giving strong support for the proposed model for high‐temperature superconductivity in such strongly correlated electronic systems. © 2015 Wiley Periodicals, Inc.  相似文献   
48.
In this study, we investigated the influence of relative humidity (RH) and loading rate on the energy response of PA6.6 matrix specimens. The latter were subjected to oligocyclic tensile-tensile tests at 3 different RH and 2 loading rates. Infrared thermography was used to obtain a direct estimate of heat sources using the heat diffusion equation. Using the mechanical and thermal responses discussed in the first part of this work, complete energy rate balances were drawn up. In particular, the time courses of deformation, and dissipated and stored energy rates are discussed. The strong influence of the loading frequency and RH on the energy storage mechanisms is also highlighted.  相似文献   
49.
This article describes the use of the mesoporous molecular sieve KIT‐6 as a sorbent in miniaturized matrix solid‐phase dispersion (MSPD) in combination with ultra‐performance LC for the determination of bioactive flavonoids in toothpaste, Scutellariae Radix, and saliva. In this study, for the first time, KIT‐6 was used as a sorbent material for this mode of extraction. Compared with common silica‐based sorbents (C18 and activated silica gel), the proposed KIT‐6 dispersant with a three‐dimensional cubic Ia3d structure and highly ordered arrays of mesoporous channels exhibits excellent adsorption capability of the tested compounds. In addition, several experimental variables, such as the mass ratio of sample to dispersant, grinding time, and elution solvent, were optimized to maximize the extraction efficiency. The proposed analytical method is simple, fast, and entails low consumption of samples, dispersants and elution solvents, thereby meeting “green chemistry” requirements. Under the optimized conditions, the recoveries of three bioactive flavonoids obtained by analyzing the spiked samples were from 89.22 to 101.17%. Also, the LODs and LOQs for determining the analytes were in the range of 0.02–0.04 μg/mL and 0.07–0.13 μg/mL, respectively. Finally, the miniaturized matrix solid‐phase dispersion method was successfully applied to the analysis of target solutes in real samples, and satisfactory results were obtained.  相似文献   
50.
The mechanism of enzymatic peptide hydrolysis in matrix metalloproteinase‐2 (MMP‐2) was studied at atomic resolution through quantum mechanics/molecular mechanics (QM/MM) simulations. An all‐atom three‐dimensional molecular model was constructed on the basis of a crystal structure from the Protein Data Bank (ID: 1QIB), and the oligopeptide Ace‐Gln‐Gly~Ile‐Ala‐Gly‐Nme was considered as the substrate. Two QM/MM software packages and several computational protocols were employed to calculate QM/MM energy profiles for a four‐step mechanism involving an initial nucleophilic attack followed by hydrogen bond rearrangement, proton transfer, and C? N bond cleavage. These QM/MM calculations consistently yield rather low overall barriers for the chemical steps, in the range of 5–10 kcal/mol, for diverse QM treatments (PBE0, B3LYP, and BB1K density functionals as well as local coupled cluster treatments) and two MM force fields (CHARMM and AMBER). It, thus, seems likely that product release is the rate‐limiting step in MMP‐2 catalysis. This is supported by an exploration of various release channels through QM/MM reaction path calculations and steered molecular dynamics simulations. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号